Embedded Systems Programming

Synchronous Model (Module 26)

Yann-Hang Lee Arizona State University yhlee@asu.edu (480) 727-7507

Summer 2014

Real-time Systems Lab, Computer Science and Engineering, ASU

Actor-Oriented Design

(http://ptolemy.eecs.berkeley.edu/presentations/04/Parc_Lee.ppt)

Actor Orientation vs. Object Orientation

Object oriented

TextToSpeech initialize(): void notify(): void isReady(): boolean getSpeech(): double[]

OO interface definition gives procedures that have to be invoked in an order not specified as part of the interface definition.

Actor oriented

actor-oriented interface definition says "Give me text and I'll give you speech"

□ Identified limitations of object orientation:

- Says little or nothing about concurrency and time
- Concurrency typically expressed with threads, monitors, semaphores
- Components tend to implement low-level communication protocols
- Re-use potential is disappointing

(http://ptolemy.eecs.berkeley.edu/presentations/04/Parc_Lee.ppt)

Example of an Actor-Oriented Framework

Signal flow graph with linear, time-invariant components

(http://ptolemy.eecs.berkeley.edu/pres entations/04/Parc_Lee.ppt)

Synchronous Execution Model – Simulink

Block: an actor

- Consists of some functionality and an arbitrary number of ports
- can be pre-defined blocks from Simulink library, S-function blocks (writing your own function in C, Fortran, etc.), or subsystem blocks
 - S-functions are dynamically linked subroutines that the MATLAB interpreter can automatically load and execute
- Signals connect block's ports to pass data between blocks
- To calculate the values of the output ports based on the values of the input ports and the internal states.
- Sample time: how often and when the functionality of a block is evaluated.

Synchronous or Asynchronous (1)

Synchronous:

- atomic reactions indexed by a global logical clock,
- each reaction computes new events for its outputs based on its internal state and on the input values
- the communication of all events between components occur synchronously during each reaction.

Cycles of reading inputs, computing reaction and producing outputs

- Synchronous = 0-delay = within the same cycle
- No interference between I/O and computation

Simulink? and other synchronous languages Why?

deterministic semantics in the presence of concurrency.

Synchronous or Asynchronous (2)

if Pri(*A*) > *Pri*(*C*)>*Pri*(*B*), *depending upon the execution time of C, B may receive inputs from A*_1 *or A*_2

Synchronous or Asynchronous (3)

- If execution time = 0, then the computation is determined by the order of arrivals, not the arrival instances, nor execution time
- Can we memorize the arrival order and then fetch data from buffer

