Scheduling Algorithm and Analysis

Aperiodic Server (Module 36)

Yann-Hang Lee Arizona State University yhlee @asu.edu (480) 727-7507

Summer 2014

Scheduling Aperiodic/Sporadic Tasks

☐ Assumptions:

- Preemptive, priority-driven algorithms
- Jobs independent of one another with arbitrary interrelease times

□ Periodic Jobs

- parameters and priority driven algorithm given
- on their own, periodic jobs meet all deadlines

□ Aperiodic Jobs

parameters not necessarily known on release

□ Sporadic

- Parameters known on release
- variable execution time
- arbitrary deadline

Scheduling Architecture for Aperiodic Tasks

□ Aperiodic, Sporadic scheduling algorithms:

- all periodic tasks meet their deadlines
- Sporadic jobs: on arrival, undergo acceptance test. Must not affect periodic jobs and already accepted sporadic jobs.
- Aperiodic jobs: Optimize response time (average) without affecting periodic and accepted sporadic jobs

Approaches: Aperiodic

- Background: scheduled when processor is idle
- Interrupt-driven: scheduled on arrival
- □ Periodic server: defined by (p_s, e_s) . Budget replenished at p_s intervals. If scheduled and queue empty then budget set to 0.
- Bandwidth-preserving server: Improves on the periodic server by preserving budget (bandwidth) when aperiodic queue is empty:
 - Deferrable servers
 - Sporadic Server
 - Constant utilization and Total bandwidth servers

Example of a Polling Server

- □ To prove it works
 - the polling server is periodic and has a WCET of e_s
- When the polling server is eligible and there is no aperiodic task
 - the budget is lost
- □ Combine with a background server

Aperiodic Servers

- □ A service thread waiting for the external trigger(s)
 - fixed execution budget
 - replenishment interval (period)
- □ Can be compared to periodic tasks
 - if it is ready, run according to priority scheduling scheme
- □ Priority adjusted to meet requirements
- ☐ Issues:
 - How to reserve the bandwidth when no aperiodic task exists
 - how to replenish the budget.
 - Example: Polling server
 - no bandwidth preserving
 - fixed replenishment time

Deferrable Server

- □ A periodic server task is created.
 - When the server is invoked with no outstanding aperiodic tasks, the server does not execute but defers its assigned time slot.
 - When an aperiodic task arrives, the server is invoked to execute aperiodic tasks and maintains its priority.
- □ Unlike the priority exchange policy, the server's time is preserved at its initial priority.
- □ The computation time allowance for the server is replenished at the start of its period.
- □ Provides better response time for aperiodic tasks than Polling server

Deferrable Server (DS)

\square Periodic task (p_s , e_s) model with rules:

- budget consumed only when executing
- budget replenished at kp_s , budget = e_s at kp_s

Sporadic Servers

- □ The deferrable server has this one additional preemption and reduces the schedulability of periodic tasks.
- ☐ Vary the points at which the computation time of the server is replenished, rather than merely at the start of each period.
 - allows to enhance the average response time for aperiodic tasks without degrading the utilization bound for periodic tasks
 - any spare capacity (i.e., not being used by periodic tasks) is available for an aperiodic task on its arrival
- □ Sporadic server (p_s , e_s) does not demand more processor time than a periodic task with the same parameters

Supplementary Slides