Embedded System Programming

WCET Analysis (1)
(Module 38)

Yann-Hang Lee
Arizona State University
yhlee@asu.edu
(480) 727-7507

Summer 2014
Execution Time – WCET & BCET

(Figure from R. Wilhelm et al., ACM Trans. Embed. Comput. Sys, 2007.)
The WCET Problem

Given
- the code for a software task
- the platform (OS + hardware) that it will run on

Determine the WCET of the task.

Why is this problem important?
- The WCET is central in the design of real-time computing

Can the WCET always be found?
- In general, not a decidability problem, but a complexity problem

Compute bounds for the execution times of instructions and basic blocks and determine a longest path in the basic-block graph of the program.
Components of Execution Time Analysis

- **Program path (Control flow) analysis**
 - Want to find longest path through the program
 - Identify feasible paths through the program
 - Find loop bounds
 - Identify dependencies amongst different code fragments

- **Processor behavior analysis**
 - For small code fragments (basic blocks), generate bounds on run-times on the platform
 - Model details of architecture, including cache behavior, pipeline stalls, branch prediction, etc.

- Outputs of both analyses feed into each other
Program Path Analysis: Overall Approach (1)

- Construct Control-Flow Graph (CFG) for the task
 - Nodes represent Basic Blocks of the task
 - Basic block: a sequence of consecutive program statements where there is no possibility of branching
 - We have a single entry and a single exit node
 - Edges represent flow of control (jumps, branches, calls, …)

- The problem is to identify the longest path in the CFG
 - Note: CFG can have loops, so need to infer loop bounds and unroll them
 - This gives us a directed acyclic graph (DAG). How do we find the longest path in this DAG?
Program Path Analysis: Overall Approach (2)

- In a CFG
 - B_i = basic block i
 - x_i = number of times the block B_i is executed
 - d_j = number of times edge is executed
 - c_i = worst case running time of block B_i

- Objective: find

\[WCET = \max_{x_i} \sum_{i=1}^{N} c_i x_i \]

- How to get x_i?
 - Structural constraints
 - Functionality constraints
 - Loop bounds -- need to be known
CFG Example

Example due to Y.T. Li and S. Malik

\[
\begin{align*}
N &= 10; \\
q &= 0; \\
\text{while}(q < N) & \quad q++; \\
q &= r;
\end{align*}
\]

\[
\begin{align*}
B1: & \quad N = 10; \\
& \quad q = 0; \\
B2: & \quad \text{while}(q < N) \\
& \quad q++; \\
& \quad q = r;
\end{align*}
\]

\[
\begin{align*}
B3: & \quad q++; \\
\end{align*}
\]

Want to maximize \(\sum_i c_i x_i \) subject to constraints:

- \(x_1 = d_1 = d_2 \)
- \(d_1 = 1 \)
- \(x_2 = d_2 + d_4 = d_3 + d_5 \)
- \(x_3 = d_3 = d_4 = 10 \)
- \(x_4 = d_5 = d_6 \)
/ * k >=0 */

s = k;

while (k < 10){
 if (ok)
 j++;
 else {
 j = 0;
 ok = true;
 }
 k++;
}

r = j;
Supplementary Slides